Databricks
Connect a Databricks notebook to a Tigris bucket using serverless compute (the
default in Databricks). Tigris is S3-compatible, so you can use boto3 to list
and read files stored in Tigris directly from your notebooks.

Prerequisites
- Tigris Access Key ID and Secret Access Key (see the Access Key guide if you need to create one)
- Tigris Endpoint:
https://t3.storage.dev - A Tigris bucket with data to read
1. Create a notebook
Log in to your Databricks workspace and create a new notebook.

2. Install dependencies
pip install boto3 pandas pyarrow s3fs
Then restart the Python kernel:
%restart_python
3. Initialize the Tigris client
import boto3
tigris_client = boto3.client(
's3',
aws_access_key_id='YOUR-ACCESS-KEY-ID',
aws_secret_access_key='YOUR-SECRET-ACCESS-KEY',
endpoint_url='https://t3.storage.dev',
region_name='auto'
)
Set region_name to auto. This works for all Tigris buckets.
4. Verify the connection
List your Tigris buckets to confirm the client is configured correctly:
response = tigris_client.list_buckets()
print([bucket['Name'] for bucket in response['Buckets']])
5. Read a Parquet file
Download and read a Parquet file from your Tigris bucket:
import pandas as pd
import pyarrow.parquet as pq
from io import BytesIO
bucket_name = 'databricks-test-bucket'
key = 'test/easy-00000-of-00002.parquet'
buffer = BytesIO()
tigris_client.download_fileobj(bucket_name, key, buffer)
buffer.seek(0)
table = pq.read_table(buffer)
df = table.to_pandas()
df.head()

You should see a preview of your Parquet file loaded into a Pandas DataFrame:
column1 column2 column3
0 value_1 value_2 value_3
1 value_4 value_5 value_6
...
